(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(x, f(f(a, a), a)) → f(f(a, f(a, a)), x)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(f(a, a), a)) → f(f(a, f(a, a)), z0)
Tuples:
F(z0, f(f(a, a), a)) → c(F(f(a, f(a, a)), z0), F(a, f(a, a)), F(a, a))
S tuples:
F(z0, f(f(a, a), a)) → c(F(f(a, f(a, a)), z0), F(a, f(a, a)), F(a, a))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(z0, f(f(a, a), a)) → c(F(f(a, f(a, a)), z0), F(a, f(a, a)), F(a, a))
We considered the (Usable) Rules:none
And the Tuples:
F(z0, f(f(a, a), a)) → c(F(f(a, f(a, a)), z0), F(a, f(a, a)), F(a, a))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = [3]x1 + [2]x2
POL(a) = [2]
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(f(x1, x2)) = [4]x1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, f(f(a, a), a)) → f(f(a, f(a, a)), z0)
Tuples:
F(z0, f(f(a, a), a)) → c(F(f(a, f(a, a)), z0), F(a, f(a, a)), F(a, a))
S tuples:none
K tuples:
F(z0, f(f(a, a), a)) → c(F(f(a, f(a, a)), z0), F(a, f(a, a)), F(a, a))
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(5) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(6) BOUNDS(O(1), O(1))